9 research outputs found

    Silicon diimide gel as an efficient stationary phase in thin layer chromatography for acid-sensitive organic compounds

    Get PDF
    We report the use of mesoporous silicon diimide gel as a basic stationary phase in thin layer chromatography for the characterisation and purification of acid-sensitive compounds. The gel is prepared by a simple sol-gel process and exhibits a large specific surface area, almost monodisperse pores and basic properties due to free-hanging amine groups

    Ultra-Compact mm-Wave Monolithic IC Doherty Power Amplifier for Mobile Handsets

    Get PDF
    YesThis work develops a novel dynamic load modulation Power Amplifier (PA) circuity that can provide an optimum compromise between linearity and efficiency while covering multiple cellular frequency bands. Exploiting monolithic microwave integrated circuits (MMIC) technology, a fully integrated 1W Doherty PA architecture is proposed based on 0.1 ”m AlGaAs/InGaAs Depletion- Mode (D-Mode) technology provided by the WIN Semiconductors foundry. The proposed wideband DPA incorporates the harmonic tuning Class-J mode of operation, which aims to engineer the voltage waveform via second harmonic capacitive load termination. Moreover, the applied post-matching technique not only reduces the impedance transformation ratio of the conventional DPA, but also restores its proper load modulation. The simulation results indicate that the monolithic drive load modulation PA at 4 V operation voltage delivers 44% PAE at the maximum output power of 30 dBm at the 1 dB compression point, and 34% power-added efficiency (PAE) at 6 dB power back-off (PBO). A power gain flatness of around 14 ± 0.5 dB was achieved over the frequency band of 23 GHz to 27 GHz. The compact MMIC load modulation technique developed for the 5G mobile handset occupies the die area of 3.2.This research was funded by the European Regional Development Fund (FEDER), through COMPETE 2020, POR ALGARVE 2020, Fundação para a CiĂȘncia e a Tecnologia (FCT) under i-Five Project (POCI-01-0145-FEDER-030500). This work is also part of the POSITION-II project funded by the ECSEL joint Undertaking under grant number Ecsel-345 7831132-Postitio-II-2017-IA. This work is supported by FCT/MCTES through national funds and when applicable co-funded EU funds under the project UIDB/50008/2020-UIDP/50008/2020. The authors would like to thank the WIN Semiconductors foundry for providing the MMIC GaAs pHEMT PDKs and technical support. This work is supported by the Project TEC2017-88242-C3-2-R- Spanish Ministerio de Ciencia, InnovaciĂłn e Universidades and EU-FEDER funding

    Multi-Resonant Class-F Power Amplifier Design for 5G Cellular Networks

    Get PDF
    yesThis work integrates a harmonic tuning mechanism in synergy with the GaN HEMT transistor for 5G mobile transceiver applications. Following a theoretical study on the operational behavior of the Class-F power amplifier (PA), a complete amplifier design procedure is described that includes the proposed Harmonic Control Circuits for the second and third harmonics and optimum loading conditions for phase shifting of the drain current and voltage waveforms. The performance improvement provided by the Class-F configuration is validated by comparing the experimental and simulated results. The designed 10W Class-F PA prototype provides a measured peak drain efficiency of 64.7% at 1dB compression point of the PA at 3.6GHz frequency

    UV-stable paper coated with APTES-modified P25 TiO2 nanoparticles

    Get PDF
    In order to inhibit the photocatalytic degradation of organic material supports induced by small titania (TiO2) nanoparticles, highly photocatalytically active, commercially available P25-TiO2 nanoparticles were first modified with a thin layer of (3-aminopropyl) triethoxysilane (APTES), which were then deposited and fixed onto the surface of paper samples via a simple, dip-coating process in water at room temperature. The resultant APTES-modified P25 TiO2 nanoparticle-coated paper samples exhibit much greater stability to UV-illumination than uncoated blank reference paper. Very little, or no, photo-degradation in terms of brightness and whiteness, respectively, of the P25-TiO2-nanoparticle-treated paper is observed. There are many other potential applications for this Green Chemistry approach to protect cellulosic fibres from UV-bleaching in sunlight and to protect their whiteness and maintain their brightness

    Secure Virtual Mobile Small Cells: A Stepping Stone Towards 6G

    Get PDF
    YesAs 5th Generation research reaches the twilight, the research community must go beyond 5G and look towards the 2030 connectivity landscape, namely 6G. In this context, this work takes a step towards the 6G vision by proposing a next generation communication platform, which aims to extend the rigid coverage area of fixed deployment networks by considering virtual mobile small cells (MSC) that are created on demand. Relying on emerging computing paradigms such as NFV (Network Function Virtualization) and SDN (Software Defined Networking), these cells can harness radio and networking capability locally reducing protocol signalling latency and overhead. These MSCs constitute an intelligent pool of networking resources that can collaborate to form a wireless network of MSCs providing a communication platform for localized, ubiquitous and reliable connectivity. The technology enablers for implementing the MSC concept are also addressed in terms of virtualization, lightweight wireless security, and energy efficient RF. The benefits of the MSC architecture towards reliable and efficient cell-offloading are demonstrated as a use-case.This project has received funding from the European Union's H2020 research and innovation program under grant agreement H2020-MCSAITN- 2016-SECRET 722424 [2]

    Whiter, brighter, and more stable cellulose paper coated with TiO 2/SiO2 core/shell nanoparticles using a layer-by-layer approach

    No full text
    To inhibit the photocatalytic degradation of organic material supports induced by small titania (TiO2) nanoparticles, four kinds of TiO2 nanoparticles, that is, commercial P25-TiO2, commercial rutile phase TiO2, rutile TiO2 nanorods and rutile TiO2 spheres, prepared from TiCl4, were coated with a thin, but dense, coating of silica (SiO2) using a conventional sol-gel technique to form TiO2/SiO2 core/shell nanoparticles. These core/shell particles were deposited and fixed as a very thin coating onto the surface of cellulose paper samples by a wet-chemistry polyelectrolyte layer-by-layer approach. The TiO2/SiO2 nanocoated paper samples exhibit higher whiteness and brightness and greater stability to UV-bleaching than comparable samples of blank paper. There are many potential applications for this green chemistry approach to protect cellulosic fibres from UV-bleaching in sunlight and to improve their whiteness and brightness

    Load‐modulation technique without using quarter‐wavelength transmission line

    No full text
    A proposed method for achieving active load-modulation technique without using a quarter-wavelength transmission line is discussed and evaluated. The theoretical analysis shows that the active load-modulation can be achieved without using a quarter-wavelength line, where the main amplifier sees a low impedance when the input signal level is low, and this impedance increases in proportion to the amount of current contributed from the peaking amplifier. The peaking amplifier sees an impedance decreasing from infinity to the normalized impedance. To validate the method, a circuit was designed, simulated and fabricated using two symmetrical gallium nitride (GaN) transistors (6 W) to achieve a peak power of 12 W and 6 dB output back-off efficiency. The design operates with 400 MHz bandwidth at 3.6 GHz and showed an average efficiency of 50% at 6 dB back-off and an efficiency of 75% at peak power. The designed circuit was tested with CW and modulated signals, the amplifier showed an Adjacent Channel Power Ratio (ACPR) of 31–35.5 dB when tested with a wideband code division multiple access signal of 6 dB peak-average-power ratio (PAPR) at 35.5 dBm average power. Additional 20 dB of linearity improvement was achieved after adding a lineariser
    corecore